Metamath Proof Explorer


Theorem reu4

Description: Restricted uniqueness using implicit substitution. (Contributed by NM, 23-Nov-1994)

Ref Expression
Hypothesis rmo4.1 x=yφψ
Assertion reu4 ∃!xAφxAφxAyAφψx=y

Proof

Step Hyp Ref Expression
1 rmo4.1 x=yφψ
2 reu5 ∃!xAφxAφ*xAφ
3 1 rmo4 *xAφxAyAφψx=y
4 3 anbi2i xAφ*xAφxAφxAyAφψx=y
5 2 4 bitri ∃!xAφxAφxAyAφψx=y