Metamath Proof Explorer


Theorem reubidv

Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 17-Oct-1996)

Ref Expression
Hypothesis rmobidv.1 φψχ
Assertion reubidv φ∃!xAψ∃!xAχ

Proof

Step Hyp Ref Expression
1 rmobidv.1 φψχ
2 1 adantr φxAψχ
3 2 reubidva φ∃!xAψ∃!xAχ