Metamath Proof Explorer


Theorem reueq1OLD

Description: Obsolete version of reueq1 as of 12-Mar-2025. (Contributed by NM, 5-Apr-2004) Remove usage of ax-10 , ax-11 , and ax-12 . (Revised by Steven Nguyen, 30-Apr-2023) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion reueq1OLD A=B∃!xAφ∃!xBφ

Proof

Step Hyp Ref Expression
1 eleq2 A=BxAxB
2 1 anbi1d A=BxAφxBφ
3 2 eubidv A=B∃!xxAφ∃!xxBφ
4 df-reu ∃!xAφ∃!xxAφ
5 df-reu ∃!xBφ∃!xxBφ
6 3 4 5 3bitr4g A=B∃!xAφ∃!xBφ