Metamath Proof Explorer


Theorem reval

Description: The value of the real part of a complex number. (Contributed by NM, 9-May-1999) (Revised by Mario Carneiro, 6-Nov-2013)

Ref Expression
Assertion reval AA=A+A2

Proof

Step Hyp Ref Expression
1 fveq2 x=Ax=A
2 oveq12 x=Ax=Ax+x=A+A
3 1 2 mpdan x=Ax+x=A+A
4 3 oveq1d x=Ax+x2=A+A2
5 df-re =xx+x2
6 ovex A+A2V
7 4 5 6 fvmpt AA=A+A2