Metamath Proof Explorer


Theorem revfv

Description: Reverse of a word at a point. (Contributed by Stefan O'Rear, 26-Aug-2015)

Ref Expression
Assertion revfv WWordAX0..^WreverseWX=WW-1-X

Proof

Step Hyp Ref Expression
1 revval WWordAreverseW=x0..^WWW-1-x
2 1 fveq1d WWordAreverseWX=x0..^WWW-1-xX
3 oveq2 x=XW-1-x=W-1-X
4 3 fveq2d x=XWW-1-x=WW-1-X
5 eqid x0..^WWW-1-x=x0..^WWW-1-x
6 fvex WW-1-XV
7 4 5 6 fvmpt X0..^Wx0..^WWW-1-xX=WW-1-X
8 2 7 sylan9eq WWordAX0..^WreverseWX=WW-1-X