Metamath Proof Explorer


Theorem rexabOLD

Description: Obsolete version of rexab as of 2-Nov-2024. (Contributed by Mario Carneiro, 23-Jan-2014) (Revised by Mario Carneiro, 3-Sep-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis ralab.1 y=xφψ
Assertion rexabOLD xy|φχxψχ

Proof

Step Hyp Ref Expression
1 ralab.1 y=xφψ
2 df-rex xy|φχxxy|φχ
3 vex xV
4 3 1 elab xy|φψ
5 4 anbi1i xy|φχψχ
6 5 exbii xxy|φχxψχ
7 2 6 bitri xy|φχxψχ