Metamath Proof Explorer


Theorem rexbid

Description: Formula-building rule for restricted existential quantifier (deduction form). For a version based on fewer axioms see rexbidv . (Contributed by NM, 27-Jun-1998)

Ref Expression
Hypotheses rexbid.1 xφ
rexbid.2 φψχ
Assertion rexbid φxAψxAχ

Proof

Step Hyp Ref Expression
1 rexbid.1 xφ
2 rexbid.2 φψχ
3 2 adantr φxAψχ
4 1 3 rexbida φxAψxAχ