Metamath Proof Explorer


Theorem rexbidv2

Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 22-May-1999)

Ref Expression
Hypothesis rexbidv2.1 φxAψxBχ
Assertion rexbidv2 φxAψxBχ

Proof

Step Hyp Ref Expression
1 rexbidv2.1 φxAψxBχ
2 1 exbidv φxxAψxxBχ
3 df-rex xAψxxAψ
4 df-rex xBχxxBχ
5 2 3 4 3bitr4g φxAψxBχ