Metamath Proof Explorer


Theorem rexeqbidvvOLD

Description: Version of rexeqbidv with additional disjoint variable conditions, not requiring ax-8 nor df-clel . (Contributed by Wolf Lammen, 25-Sep-2024) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses raleqbidvv.1 φA=B
raleqbidvv.2 φψχ
Assertion rexeqbidvvOLD φxAψxBχ

Proof

Step Hyp Ref Expression
1 raleqbidvv.1 φA=B
2 raleqbidvv.2 φψχ
3 2 notbid φ¬ψ¬χ
4 1 3 raleqbidvv φxA¬ψxB¬χ
5 ralnex xA¬ψ¬xAψ
6 ralnex xB¬χ¬xBχ
7 4 5 6 3bitr3g φ¬xAψ¬xBχ
8 7 con4bid φxAψxBχ