Metamath Proof Explorer


Theorem rexeqbii

Description: Equality deduction for restricted existential quantifier, changing both formula and quantifier domain. Inference form. (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses rexeqbii.1 A=B
rexeqbii.2 ψχ
Assertion rexeqbii xAψxBχ

Proof

Step Hyp Ref Expression
1 rexeqbii.1 A=B
2 rexeqbii.2 ψχ
3 1 eleq2i xAxB
4 3 2 anbi12i xAψxBχ
5 4 rexbii2 xAψxBχ