Metamath Proof Explorer


Theorem rexlimivOLD

Description: Obsolete version of rexlimiv as of 19-Dec-2024.) (Contributed by NM, 20-Nov-1994) Reduce dependencies on axioms. (Revised by Wolf Lammen, 14-Jan-2020) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis rexlimivOLD.1 x A φ ψ
Assertion rexlimivOLD x A φ ψ

Proof

Step Hyp Ref Expression
1 rexlimivOLD.1 x A φ ψ
2 1 rgen x A φ ψ
3 r19.23v x A φ ψ x A φ ψ
4 2 3 mpbi x A φ ψ