Metamath Proof Explorer


Theorem rexlimivOLD

Description: Obsolete version of rexlimiv as of 19-Dec-2024.) (Contributed by NM, 20-Nov-1994) Reduce dependencies on axioms. (Revised by Wolf Lammen, 14-Jan-2020) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis rexlimivOLD.1 xAφψ
Assertion rexlimivOLD xAφψ

Proof

Step Hyp Ref Expression
1 rexlimivOLD.1 xAφψ
2 1 rgen xAφψ
3 r19.23v xAφψxAφψ
4 2 3 mpbi xAφψ