Metamath Proof Explorer


Theorem rexlimivOLD

Description: Obsolete version of rexlimiv as of 19-Dec-2024.) (Contributed by NM, 20-Nov-1994) Reduce dependencies on axioms. (Revised by Wolf Lammen, 14-Jan-2020) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis rexlimivOLD.1
|- ( x e. A -> ( ph -> ps ) )
Assertion rexlimivOLD
|- ( E. x e. A ph -> ps )

Proof

Step Hyp Ref Expression
1 rexlimivOLD.1
 |-  ( x e. A -> ( ph -> ps ) )
2 1 rgen
 |-  A. x e. A ( ph -> ps )
3 r19.23v
 |-  ( A. x e. A ( ph -> ps ) <-> ( E. x e. A ph -> ps ) )
4 2 3 mpbi
 |-  ( E. x e. A ph -> ps )