Metamath Proof Explorer


Theorem rexralbidv

Description: Formula-building rule for restricted quantifiers (deduction form). (Contributed by NM, 28-Jan-2006)

Ref Expression
Hypothesis 2ralbidv.1 φψχ
Assertion rexralbidv φxAyBψxAyBχ

Proof

Step Hyp Ref Expression
1 2ralbidv.1 φψχ
2 1 ralbidv φyBψyBχ
3 2 rexbidv φxAyBψxAyBχ