Metamath Proof Explorer


Theorem 3ralbidv

Description: Formula-building rule for restricted universal quantifiers (deduction form.) (Contributed by Scott Fenton, 20-Feb-2025)

Ref Expression
Hypothesis 3ralbidv.1 φψχ
Assertion 3ralbidv φxAyBzCψxAyBzCχ

Proof

Step Hyp Ref Expression
1 3ralbidv.1 φψχ
2 1 ralbidv φzCψzCχ
3 2 2ralbidv φxAyBzCψxAyBzCχ