Metamath Proof Explorer


Theorem 4ralbidv

Description: Formula-building rule for restricted universal quantifiers (deduction form.) (Contributed by Scott Fenton, 20-Feb-2025)

Ref Expression
Hypothesis 4ralbidv.1 φψχ
Assertion 4ralbidv φxAyBzCwDψxAyBzCwDχ

Proof

Step Hyp Ref Expression
1 4ralbidv.1 φψχ
2 1 ralbidv φwDψwDχ
3 2 3ralbidv φxAyBzCwDψxAyBzCwDχ