Metamath Proof Explorer


Theorem rexrnmpt

Description: A restricted quantifier over an image set. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker rexrnmptw when possible. (Contributed by Mario Carneiro, 20-Aug-2015) (New usage is discouraged.)

Ref Expression
Hypotheses ralrnmpt.1 F=xAB
ralrnmpt.2 y=Bψχ
Assertion rexrnmpt xABVyranFψxAχ

Proof

Step Hyp Ref Expression
1 ralrnmpt.1 F=xAB
2 ralrnmpt.2 y=Bψχ
3 2 notbid y=B¬ψ¬χ
4 1 3 ralrnmpt xABVyranF¬ψxA¬χ
5 4 notbid xABV¬yranF¬ψ¬xA¬χ
6 dfrex2 yranFψ¬yranF¬ψ
7 dfrex2 xAχ¬xA¬χ
8 5 6 7 3bitr4g xABVyranFψxAχ