Metamath Proof Explorer


Theorem rexsngf

Description: Restricted existential quantification over a singleton. (Contributed by NM, 29-Jan-2012) (Revised by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses rexsngf.1 x ψ
rexsngf.2 x = A φ ψ
Assertion rexsngf A V x A φ ψ

Proof

Step Hyp Ref Expression
1 rexsngf.1 x ψ
2 rexsngf.2 x = A φ ψ
3 rexsns x A φ [˙A / x]˙ φ
4 1 2 sbciegf A V [˙A / x]˙ φ ψ
5 3 4 bitrid A V x A φ ψ