Metamath Proof Explorer


Theorem rexv

Description: An existential quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004)

Ref Expression
Assertion rexv xVφxφ

Proof

Step Hyp Ref Expression
1 df-rex xVφxxVφ
2 vex xV
3 2 biantrur φxVφ
4 3 exbii xφxxVφ
5 1 4 bitr4i xVφxφ