Database
BASIC ALGEBRAIC STRUCTURES
Subring algebras and ideals
Two-sided ideals and quotient rings
ridl0
Next ⟩
ridl1
Metamath Proof Explorer
Ascii
Unicode
Theorem
ridl0
Description:
Every ring contains a zero right ideal.
(Contributed by
AV
, 13-Feb-2025)
Ref
Expression
Hypotheses
ridl0.u
⊢
U
=
LIdeal
⁡
opp
r
⁡
R
ridl0.z
⊢
0
˙
=
0
R
Assertion
ridl0
⊢
R
∈
Ring
→
0
˙
∈
U
Proof
Step
Hyp
Ref
Expression
1
ridl0.u
⊢
U
=
LIdeal
⁡
opp
r
⁡
R
2
ridl0.z
⊢
0
˙
=
0
R
3
eqid
⊢
opp
r
⁡
R
=
opp
r
⁡
R
4
3
opprring
⊢
R
∈
Ring
→
opp
r
⁡
R
∈
Ring
5
3
2
oppr0
⊢
0
˙
=
0
opp
r
⁡
R
6
1
5
lidl0
⊢
opp
r
⁡
R
∈
Ring
→
0
˙
∈
U
7
4
6
syl
⊢
R
∈
Ring
→
0
˙
∈
U