Description: In a unitary ring, the ring unity is not a zero divisor. (Contributed by AV, 7-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringunitnzdiv.b | ||
| ringunitnzdiv.z | |||
| ringunitnzdiv.t | |||
| ringunitnzdiv.r | |||
| ringunitnzdiv.y | |||
| ring1nzdiv.x | |||
| Assertion | ring1nzdiv | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ringunitnzdiv.b | ||
| 2 | ringunitnzdiv.z | ||
| 3 | ringunitnzdiv.t | ||
| 4 | ringunitnzdiv.r | ||
| 5 | ringunitnzdiv.y | ||
| 6 | ring1nzdiv.x | ||
| 7 | eqid | ||
| 8 | 7 6 | 1unit | |
| 9 | 4 8 | syl | |
| 10 | 1 2 3 4 5 9 | ringunitnzdiv |