Metamath Proof Explorer


Theorem ring1nzdiv

Description: In a unitary ring, the ring unity is not a zero divisor. (Contributed by AV, 7-Mar-2025)

Ref Expression
Hypotheses ringunitnzdiv.b B=BaseR
ringunitnzdiv.z 0˙=0R
ringunitnzdiv.t ·˙=R
ringunitnzdiv.r φRRing
ringunitnzdiv.y φYB
ring1nzdiv.x 1˙=1R
Assertion ring1nzdiv φ1˙·˙Y=0˙Y=0˙

Proof

Step Hyp Ref Expression
1 ringunitnzdiv.b B=BaseR
2 ringunitnzdiv.z 0˙=0R
3 ringunitnzdiv.t ·˙=R
4 ringunitnzdiv.r φRRing
5 ringunitnzdiv.y φYB
6 ring1nzdiv.x 1˙=1R
7 eqid UnitR=UnitR
8 7 6 1unit RRing1˙UnitR
9 4 8 syl φ1˙UnitR
10 1 2 3 4 5 9 ringunitnzdiv φ1˙·˙Y=0˙Y=0˙