Metamath Proof Explorer
Description: In a unitary ring, the ring unity is not a zero divisor. (Contributed by AV, 7-Mar-2025)
|
|
Ref |
Expression |
|
Hypotheses |
ringunitnzdiv.b |
|
|
|
ringunitnzdiv.z |
|
|
|
ringunitnzdiv.t |
|
|
|
ringunitnzdiv.r |
|
|
|
ringunitnzdiv.y |
|
|
|
ring1nzdiv.x |
|
|
Assertion |
ring1nzdiv |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ringunitnzdiv.b |
|
2 |
|
ringunitnzdiv.z |
|
3 |
|
ringunitnzdiv.t |
|
4 |
|
ringunitnzdiv.r |
|
5 |
|
ringunitnzdiv.y |
|
6 |
|
ring1nzdiv.x |
|
7 |
|
eqid |
|
8 |
7 6
|
1unit |
|
9 |
4 8
|
syl |
|
10 |
1 2 3 4 5 9
|
ringunitnzdiv |
|