Metamath Proof Explorer


Theorem ringccatALTV

Description: The category of rings is a category. (Contributed by AV, 14-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypothesis ringccatALTV.c C = RingCatALTV U
Assertion ringccatALTV U V C Cat

Proof

Step Hyp Ref Expression
1 ringccatALTV.c C = RingCatALTV U
2 eqid Base C = Base C
3 1 2 ringccatidALTV U V C Cat Id C = x Base C I Base x
4 3 simpld U V C Cat