Metamath Proof Explorer


Theorem ringccatidALTV

Description: Lemma for ringccatALTV . (Contributed by AV, 14-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses ringccatALTV.c C=RingCatALTVU
ringccatidALTV.b B=BaseC
Assertion ringccatidALTV UVCCatIdC=xBIBasex

Proof

Step Hyp Ref Expression
1 ringccatALTV.c C=RingCatALTVU
2 ringccatidALTV.b B=BaseC
3 2 a1i UVB=BaseC
4 eqidd UVHomC=HomC
5 eqidd UVcompC=compC
6 1 fvexi CV
7 6 a1i UVCV
8 biid wBxByBzBfwHomCxgxHomCyhyHomCzwBxByBzBfwHomCxgxHomCyhyHomCz
9 simpl UVxBUV
10 1 2 9 ringcbasALTV UVxBB=URing
11 eleq2 B=URingxBxURing
12 elin xURingxUxRing
13 12 simprbi xURingxRing
14 11 13 syl6bi B=URingxBxRing
15 14 com12 xBB=URingxRing
16 15 adantl UVxBB=URingxRing
17 10 16 mpd UVxBxRing
18 eqid Basex=Basex
19 18 idrhm xRingIBasexxRingHomx
20 17 19 syl UVxBIBasexxRingHomx
21 eqid HomC=HomC
22 simpr UVxBxB
23 1 2 9 21 22 22 ringchomALTV UVxBxHomCx=xRingHomx
24 20 23 eleqtrrd UVxBIBasexxHomCx
25 simpl UVwBxByBzBfwHomCxgxHomCyhyHomCzUV
26 eqid compC=compC
27 simpl wBxBwB
28 27 3ad2ant1 wBxByBzBfwHomCxgxHomCyhyHomCzwB
29 28 adantl UVwBxByBzBfwHomCxgxHomCyhyHomCzwB
30 simpr wBxBxB
31 30 3ad2ant1 wBxByBzBfwHomCxgxHomCyhyHomCzxB
32 31 adantl UVwBxByBzBfwHomCxgxHomCyhyHomCzxB
33 simp1 UVyBzBwBxBUV
34 27 3ad2ant3 UVyBzBwBxBwB
35 30 3ad2ant3 UVyBzBwBxBxB
36 1 2 33 21 34 35 ringchomALTV UVyBzBwBxBwHomCx=wRingHomx
37 36 eleq2d UVyBzBwBxBfwHomCxfwRingHomx
38 37 biimpd UVyBzBwBxBfwHomCxfwRingHomx
39 38 3exp UVyBzBwBxBfwHomCxfwRingHomx
40 39 com14 fwHomCxyBzBwBxBUVfwRingHomx
41 40 3ad2ant1 fwHomCxgxHomCyhyHomCzyBzBwBxBUVfwRingHomx
42 41 com13 wBxByBzBfwHomCxgxHomCyhyHomCzUVfwRingHomx
43 42 3imp wBxByBzBfwHomCxgxHomCyhyHomCzUVfwRingHomx
44 43 impcom UVwBxByBzBfwHomCxgxHomCyhyHomCzfwRingHomx
45 20 expcom xBUVIBasexxRingHomx
46 45 adantl wBxBUVIBasexxRingHomx
47 46 3ad2ant1 wBxByBzBfwHomCxgxHomCyhyHomCzUVIBasexxRingHomx
48 47 impcom UVwBxByBzBfwHomCxgxHomCyhyHomCzIBasexxRingHomx
49 1 2 25 26 29 32 32 44 48 ringccoALTV UVwBxByBzBfwHomCxgxHomCyhyHomCzIBasexwxcompCxf=IBasexf
50 simpl UVwBxBUV
51 simprl UVwBxBwB
52 simprr UVwBxBxB
53 1 2 50 21 51 52 elringchomALTV UVwBxBfwHomCxf:BasewBasex
54 53 ex UVwBxBfwHomCxf:BasewBasex
55 54 com13 fwHomCxwBxBUVf:BasewBasex
56 fcoi2 f:BasewBasexIBasexf=f
57 55 56 syl8 fwHomCxwBxBUVIBasexf=f
58 57 3ad2ant1 fwHomCxgxHomCyhyHomCzwBxBUVIBasexf=f
59 58 com12 wBxBfwHomCxgxHomCyhyHomCzUVIBasexf=f
60 59 a1d wBxByBzBfwHomCxgxHomCyhyHomCzUVIBasexf=f
61 60 3imp wBxByBzBfwHomCxgxHomCyhyHomCzUVIBasexf=f
62 61 impcom UVwBxByBzBfwHomCxgxHomCyhyHomCzIBasexf=f
63 49 62 eqtrd UVwBxByBzBfwHomCxgxHomCyhyHomCzIBasexwxcompCxf=f
64 simp3 gxHomCywBxByBzBUVUV
65 30 adantr wBxByBzBxB
66 65 3ad2ant2 gxHomCywBxByBzBUVxB
67 simprl wBxByBzByB
68 67 3ad2ant2 gxHomCywBxByBzBUVyB
69 46 adantr wBxByBzBUVIBasexxRingHomx
70 69 a1i gxHomCywBxByBzBUVIBasexxRingHomx
71 70 3imp gxHomCywBxByBzBUVIBasexxRingHomx
72 simpl UVwBxByBzBUV
73 65 adantl UVwBxByBzBxB
74 67 adantl UVwBxByBzByB
75 1 2 72 21 73 74 ringchomALTV UVwBxByBzBxHomCy=xRingHomy
76 75 eleq2d UVwBxByBzBgxHomCygxRingHomy
77 76 biimpd UVwBxByBzBgxHomCygxRingHomy
78 77 ex UVwBxByBzBgxHomCygxRingHomy
79 78 com13 gxHomCywBxByBzBUVgxRingHomy
80 79 3imp gxHomCywBxByBzBUVgxRingHomy
81 1 2 64 26 66 66 68 71 80 ringccoALTV gxHomCywBxByBzBUVgxxcompCyIBasex=gIBasex
82 1 2 72 21 73 74 elringchomALTV UVwBxByBzBgxHomCyg:BasexBasey
83 82 ex UVwBxByBzBgxHomCyg:BasexBasey
84 83 com13 gxHomCywBxByBzBUVg:BasexBasey
85 84 3imp gxHomCywBxByBzBUVg:BasexBasey
86 fcoi1 g:BasexBaseygIBasex=g
87 85 86 syl gxHomCywBxByBzBUVgIBasex=g
88 81 87 eqtrd gxHomCywBxByBzBUVgxxcompCyIBasex=g
89 88 3exp gxHomCywBxByBzBUVgxxcompCyIBasex=g
90 89 3ad2ant2 fwHomCxgxHomCyhyHomCzwBxByBzBUVgxxcompCyIBasex=g
91 90 expdcom wBxByBzBfwHomCxgxHomCyhyHomCzUVgxxcompCyIBasex=g
92 91 3imp wBxByBzBfwHomCxgxHomCyhyHomCzUVgxxcompCyIBasex=g
93 92 impcom UVwBxByBzBfwHomCxgxHomCyhyHomCzgxxcompCyIBasex=g
94 simpl yBzByB
95 94 3ad2ant2 UVyBzBwBxByB
96 1 2 33 21 35 95 ringchomALTV UVyBzBwBxBxHomCy=xRingHomy
97 96 eleq2d UVyBzBwBxBgxHomCygxRingHomy
98 97 biimpd UVyBzBwBxBgxHomCygxRingHomy
99 98 3exp UVyBzBwBxBgxHomCygxRingHomy
100 99 com14 gxHomCyyBzBwBxBUVgxRingHomy
101 100 3ad2ant2 fwHomCxgxHomCyhyHomCzyBzBwBxBUVgxRingHomy
102 101 com13 wBxByBzBfwHomCxgxHomCyhyHomCzUVgxRingHomy
103 102 3imp wBxByBzBfwHomCxgxHomCyhyHomCzUVgxRingHomy
104 103 impcom UVwBxByBzBfwHomCxgxHomCyhyHomCzgxRingHomy
105 rhmco gxRingHomyfwRingHomxgfwRingHomy
106 104 44 105 syl2anc UVwBxByBzBfwHomCxgxHomCyhyHomCzgfwRingHomy
107 94 3ad2ant2 wBxByBzBfwHomCxgxHomCyhyHomCzyB
108 107 adantl UVwBxByBzBfwHomCxgxHomCyhyHomCzyB
109 1 2 25 26 29 32 108 44 104 ringccoALTV UVwBxByBzBfwHomCxgxHomCyhyHomCzgwxcompCyf=gf
110 1 2 25 21 29 108 ringchomALTV UVwBxByBzBfwHomCxgxHomCyhyHomCzwHomCy=wRingHomy
111 106 109 110 3eltr4d UVwBxByBzBfwHomCxgxHomCyhyHomCzgwxcompCyfwHomCy
112 coass hgf=hgf
113 simp2r wBxByBzBfwHomCxgxHomCyhyHomCzzB
114 113 adantl UVwBxByBzBfwHomCxgxHomCyhyHomCzzB
115 simp2r UVyBzBwBxBzB
116 1 2 33 21 95 115 ringchomALTV UVyBzBwBxByHomCz=yRingHomz
117 116 eleq2d UVyBzBwBxBhyHomCzhyRingHomz
118 117 biimpd UVyBzBwBxBhyHomCzhyRingHomz
119 118 3exp UVyBzBwBxBhyHomCzhyRingHomz
120 119 com14 hyHomCzyBzBwBxBUVhyRingHomz
121 120 3ad2ant3 fwHomCxgxHomCyhyHomCzyBzBwBxBUVhyRingHomz
122 121 com13 wBxByBzBfwHomCxgxHomCyhyHomCzUVhyRingHomz
123 122 3imp wBxByBzBfwHomCxgxHomCyhyHomCzUVhyRingHomz
124 123 impcom UVwBxByBzBfwHomCxgxHomCyhyHomCzhyRingHomz
125 rhmco hyRingHomzgxRingHomyhgxRingHomz
126 124 104 125 syl2anc UVwBxByBzBfwHomCxgxHomCyhyHomCzhgxRingHomz
127 1 2 25 26 29 32 114 44 126 ringccoALTV UVwBxByBzBfwHomCxgxHomCyhyHomCzhgwxcompCzf=hgf
128 1 2 25 26 29 108 114 106 124 ringccoALTV UVwBxByBzBfwHomCxgxHomCyhyHomCzhwycompCzgf=hgf
129 112 127 128 3eqtr4a UVwBxByBzBfwHomCxgxHomCyhyHomCzhgwxcompCzf=hwycompCzgf
130 1 2 25 26 32 108 114 104 124 ringccoALTV UVwBxByBzBfwHomCxgxHomCyhyHomCzhxycompCzg=hg
131 130 oveq1d UVwBxByBzBfwHomCxgxHomCyhyHomCzhxycompCzgwxcompCzf=hgwxcompCzf
132 109 oveq2d UVwBxByBzBfwHomCxgxHomCyhyHomCzhwycompCzgwxcompCyf=hwycompCzgf
133 129 131 132 3eqtr4d UVwBxByBzBfwHomCxgxHomCyhyHomCzhxycompCzgwxcompCzf=hwycompCzgwxcompCyf
134 3 4 5 7 8 24 63 93 111 133 iscatd2 UVCCatIdC=xBIBasex