Metamath Proof Explorer


Theorem ringchomALTV

Description: Set of arrows of the category of rings (in a universe). (Contributed by AV, 14-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses ringcbasALTV.c C = RingCatALTV U
ringcbasALTV.b B = Base C
ringcbasALTV.u φ U V
ringchomfvalALTV.h H = Hom C
ringchomALTV.x φ X B
ringchomALTV.y φ Y B
Assertion ringchomALTV φ X H Y = X RingHom Y

Proof

Step Hyp Ref Expression
1 ringcbasALTV.c C = RingCatALTV U
2 ringcbasALTV.b B = Base C
3 ringcbasALTV.u φ U V
4 ringchomfvalALTV.h H = Hom C
5 ringchomALTV.x φ X B
6 ringchomALTV.y φ Y B
7 1 2 3 4 ringchomfvalALTV φ H = x B , y B x RingHom y
8 oveq12 x = X y = Y x RingHom y = X RingHom Y
9 8 adantl φ x = X y = Y x RingHom y = X RingHom Y
10 ovexd φ X RingHom Y V
11 7 9 5 6 10 ovmpod φ X H Y = X RingHom Y