Description: Set of arrows of the category of rings (in a universe). (Contributed by AV, 14-Feb-2020) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ringcbasALTV.c | |- C = ( RingCatALTV ` U ) |
|
ringcbasALTV.b | |- B = ( Base ` C ) |
||
ringcbasALTV.u | |- ( ph -> U e. V ) |
||
ringchomfvalALTV.h | |- H = ( Hom ` C ) |
||
ringchomALTV.x | |- ( ph -> X e. B ) |
||
ringchomALTV.y | |- ( ph -> Y e. B ) |
||
Assertion | ringchomALTV | |- ( ph -> ( X H Y ) = ( X RingHom Y ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringcbasALTV.c | |- C = ( RingCatALTV ` U ) |
|
2 | ringcbasALTV.b | |- B = ( Base ` C ) |
|
3 | ringcbasALTV.u | |- ( ph -> U e. V ) |
|
4 | ringchomfvalALTV.h | |- H = ( Hom ` C ) |
|
5 | ringchomALTV.x | |- ( ph -> X e. B ) |
|
6 | ringchomALTV.y | |- ( ph -> Y e. B ) |
|
7 | 1 2 3 4 | ringchomfvalALTV | |- ( ph -> H = ( x e. B , y e. B |-> ( x RingHom y ) ) ) |
8 | oveq12 | |- ( ( x = X /\ y = Y ) -> ( x RingHom y ) = ( X RingHom Y ) ) |
|
9 | 8 | adantl | |- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( x RingHom y ) = ( X RingHom Y ) ) |
10 | ovexd | |- ( ph -> ( X RingHom Y ) e. _V ) |
|
11 | 7 9 5 6 10 | ovmpod | |- ( ph -> ( X H Y ) = ( X RingHom Y ) ) |