Step |
Hyp |
Ref |
Expression |
1 |
|
ringccatALTV.c |
⊢ 𝐶 = ( RingCatALTV ‘ 𝑈 ) |
2 |
|
ringccatidALTV.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
3 |
2
|
a1i |
⊢ ( 𝑈 ∈ 𝑉 → 𝐵 = ( Base ‘ 𝐶 ) ) |
4 |
|
eqidd |
⊢ ( 𝑈 ∈ 𝑉 → ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) ) |
5 |
|
eqidd |
⊢ ( 𝑈 ∈ 𝑉 → ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) ) |
6 |
1
|
fvexi |
⊢ 𝐶 ∈ V |
7 |
6
|
a1i |
⊢ ( 𝑈 ∈ 𝑉 → 𝐶 ∈ V ) |
8 |
|
biid |
⊢ ( ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ↔ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) |
9 |
|
simpl |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) → 𝑈 ∈ 𝑉 ) |
10 |
1 2 9
|
ringcbasALTV |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) → 𝐵 = ( 𝑈 ∩ Ring ) ) |
11 |
|
eleq2 |
⊢ ( 𝐵 = ( 𝑈 ∩ Ring ) → ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ ( 𝑈 ∩ Ring ) ) ) |
12 |
|
elin |
⊢ ( 𝑥 ∈ ( 𝑈 ∩ Ring ) ↔ ( 𝑥 ∈ 𝑈 ∧ 𝑥 ∈ Ring ) ) |
13 |
12
|
simprbi |
⊢ ( 𝑥 ∈ ( 𝑈 ∩ Ring ) → 𝑥 ∈ Ring ) |
14 |
11 13
|
syl6bi |
⊢ ( 𝐵 = ( 𝑈 ∩ Ring ) → ( 𝑥 ∈ 𝐵 → 𝑥 ∈ Ring ) ) |
15 |
14
|
com12 |
⊢ ( 𝑥 ∈ 𝐵 → ( 𝐵 = ( 𝑈 ∩ Ring ) → 𝑥 ∈ Ring ) ) |
16 |
15
|
adantl |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐵 = ( 𝑈 ∩ Ring ) → 𝑥 ∈ Ring ) ) |
17 |
10 16
|
mpd |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ Ring ) |
18 |
|
eqid |
⊢ ( Base ‘ 𝑥 ) = ( Base ‘ 𝑥 ) |
19 |
18
|
idrhm |
⊢ ( 𝑥 ∈ Ring → ( I ↾ ( Base ‘ 𝑥 ) ) ∈ ( 𝑥 RingHom 𝑥 ) ) |
20 |
17 19
|
syl |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) → ( I ↾ ( Base ‘ 𝑥 ) ) ∈ ( 𝑥 RingHom 𝑥 ) ) |
21 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
22 |
|
simpr |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
23 |
1 2 9 21 22 22
|
ringchomALTV |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) = ( 𝑥 RingHom 𝑥 ) ) |
24 |
20 23
|
eleqtrrd |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) → ( I ↾ ( Base ‘ 𝑥 ) ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) |
25 |
|
simpl |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → 𝑈 ∈ 𝑉 ) |
26 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
27 |
|
simpl |
⊢ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → 𝑤 ∈ 𝐵 ) |
28 |
27
|
3ad2ant1 |
⊢ ( ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → 𝑤 ∈ 𝐵 ) |
29 |
28
|
adantl |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → 𝑤 ∈ 𝐵 ) |
30 |
|
simpr |
⊢ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
31 |
30
|
3ad2ant1 |
⊢ ( ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → 𝑥 ∈ 𝐵 ) |
32 |
31
|
adantl |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → 𝑥 ∈ 𝐵 ) |
33 |
|
simp1 |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) → 𝑈 ∈ 𝑉 ) |
34 |
27
|
3ad2ant3 |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) → 𝑤 ∈ 𝐵 ) |
35 |
30
|
3ad2ant3 |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) → 𝑥 ∈ 𝐵 ) |
36 |
1 2 33 21 34 35
|
ringchomALTV |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) → ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) = ( 𝑤 RingHom 𝑥 ) ) |
37 |
36
|
eleq2d |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) → ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ↔ 𝑓 ∈ ( 𝑤 RingHom 𝑥 ) ) ) |
38 |
37
|
biimpd |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) → ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) → 𝑓 ∈ ( 𝑤 RingHom 𝑥 ) ) ) |
39 |
38
|
3exp |
⊢ ( 𝑈 ∈ 𝑉 → ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) → 𝑓 ∈ ( 𝑤 RingHom 𝑥 ) ) ) ) ) |
40 |
39
|
com14 |
⊢ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) → ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑈 ∈ 𝑉 → 𝑓 ∈ ( 𝑤 RingHom 𝑥 ) ) ) ) ) |
41 |
40
|
3ad2ant1 |
⊢ ( ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) → ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑈 ∈ 𝑉 → 𝑓 ∈ ( 𝑤 RingHom 𝑥 ) ) ) ) ) |
42 |
41
|
com13 |
⊢ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) → ( 𝑈 ∈ 𝑉 → 𝑓 ∈ ( 𝑤 RingHom 𝑥 ) ) ) ) ) |
43 |
42
|
3imp |
⊢ ( ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( 𝑈 ∈ 𝑉 → 𝑓 ∈ ( 𝑤 RingHom 𝑥 ) ) ) |
44 |
43
|
impcom |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → 𝑓 ∈ ( 𝑤 RingHom 𝑥 ) ) |
45 |
20
|
expcom |
⊢ ( 𝑥 ∈ 𝐵 → ( 𝑈 ∈ 𝑉 → ( I ↾ ( Base ‘ 𝑥 ) ) ∈ ( 𝑥 RingHom 𝑥 ) ) ) |
46 |
45
|
adantl |
⊢ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑈 ∈ 𝑉 → ( I ↾ ( Base ‘ 𝑥 ) ) ∈ ( 𝑥 RingHom 𝑥 ) ) ) |
47 |
46
|
3ad2ant1 |
⊢ ( ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( 𝑈 ∈ 𝑉 → ( I ↾ ( Base ‘ 𝑥 ) ) ∈ ( 𝑥 RingHom 𝑥 ) ) ) |
48 |
47
|
impcom |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( I ↾ ( Base ‘ 𝑥 ) ) ∈ ( 𝑥 RingHom 𝑥 ) ) |
49 |
1 2 25 26 29 32 32 44 48
|
ringccoALTV |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( ( I ↾ ( Base ‘ 𝑥 ) ) ( 〈 𝑤 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = ( ( I ↾ ( Base ‘ 𝑥 ) ) ∘ 𝑓 ) ) |
50 |
|
simpl |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) → 𝑈 ∈ 𝑉 ) |
51 |
|
simprl |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) → 𝑤 ∈ 𝐵 ) |
52 |
|
simprr |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) → 𝑥 ∈ 𝐵 ) |
53 |
1 2 50 21 51 52
|
elringchomALTV |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) → ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) → 𝑓 : ( Base ‘ 𝑤 ) ⟶ ( Base ‘ 𝑥 ) ) ) |
54 |
53
|
ex |
⊢ ( 𝑈 ∈ 𝑉 → ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) → 𝑓 : ( Base ‘ 𝑤 ) ⟶ ( Base ‘ 𝑥 ) ) ) ) |
55 |
54
|
com13 |
⊢ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) → ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑈 ∈ 𝑉 → 𝑓 : ( Base ‘ 𝑤 ) ⟶ ( Base ‘ 𝑥 ) ) ) ) |
56 |
|
fcoi2 |
⊢ ( 𝑓 : ( Base ‘ 𝑤 ) ⟶ ( Base ‘ 𝑥 ) → ( ( I ↾ ( Base ‘ 𝑥 ) ) ∘ 𝑓 ) = 𝑓 ) |
57 |
55 56
|
syl8 |
⊢ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) → ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑈 ∈ 𝑉 → ( ( I ↾ ( Base ‘ 𝑥 ) ) ∘ 𝑓 ) = 𝑓 ) ) ) |
58 |
57
|
3ad2ant1 |
⊢ ( ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) → ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑈 ∈ 𝑉 → ( ( I ↾ ( Base ‘ 𝑥 ) ) ∘ 𝑓 ) = 𝑓 ) ) ) |
59 |
58
|
com12 |
⊢ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) → ( 𝑈 ∈ 𝑉 → ( ( I ↾ ( Base ‘ 𝑥 ) ) ∘ 𝑓 ) = 𝑓 ) ) ) |
60 |
59
|
a1d |
⊢ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) → ( 𝑈 ∈ 𝑉 → ( ( I ↾ ( Base ‘ 𝑥 ) ) ∘ 𝑓 ) = 𝑓 ) ) ) ) |
61 |
60
|
3imp |
⊢ ( ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( 𝑈 ∈ 𝑉 → ( ( I ↾ ( Base ‘ 𝑥 ) ) ∘ 𝑓 ) = 𝑓 ) ) |
62 |
61
|
impcom |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( ( I ↾ ( Base ‘ 𝑥 ) ) ∘ 𝑓 ) = 𝑓 ) |
63 |
49 62
|
eqtrd |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( ( I ↾ ( Base ‘ 𝑥 ) ) ( 〈 𝑤 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ) |
64 |
|
simp3 |
⊢ ( ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑈 ∈ 𝑉 ) → 𝑈 ∈ 𝑉 ) |
65 |
30
|
adantr |
⊢ ( ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑥 ∈ 𝐵 ) |
66 |
65
|
3ad2ant2 |
⊢ ( ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑈 ∈ 𝑉 ) → 𝑥 ∈ 𝐵 ) |
67 |
|
simprl |
⊢ ( ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) |
68 |
67
|
3ad2ant2 |
⊢ ( ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑈 ∈ 𝑉 ) → 𝑦 ∈ 𝐵 ) |
69 |
46
|
adantr |
⊢ ( ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑈 ∈ 𝑉 → ( I ↾ ( Base ‘ 𝑥 ) ) ∈ ( 𝑥 RingHom 𝑥 ) ) ) |
70 |
69
|
a1i |
⊢ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) → ( ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑈 ∈ 𝑉 → ( I ↾ ( Base ‘ 𝑥 ) ) ∈ ( 𝑥 RingHom 𝑥 ) ) ) ) |
71 |
70
|
3imp |
⊢ ( ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑈 ∈ 𝑉 ) → ( I ↾ ( Base ‘ 𝑥 ) ) ∈ ( 𝑥 RingHom 𝑥 ) ) |
72 |
|
simpl |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ) → 𝑈 ∈ 𝑉 ) |
73 |
65
|
adantl |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ) → 𝑥 ∈ 𝐵 ) |
74 |
67
|
adantl |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ) → 𝑦 ∈ 𝐵 ) |
75 |
1 2 72 21 73 74
|
ringchomALTV |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ) → ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) = ( 𝑥 RingHom 𝑦 ) ) |
76 |
75
|
eleq2d |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ) → ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↔ 𝑔 ∈ ( 𝑥 RingHom 𝑦 ) ) ) |
77 |
76
|
biimpd |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ) → ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) → 𝑔 ∈ ( 𝑥 RingHom 𝑦 ) ) ) |
78 |
77
|
ex |
⊢ ( 𝑈 ∈ 𝑉 → ( ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) → 𝑔 ∈ ( 𝑥 RingHom 𝑦 ) ) ) ) |
79 |
78
|
com13 |
⊢ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) → ( ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑈 ∈ 𝑉 → 𝑔 ∈ ( 𝑥 RingHom 𝑦 ) ) ) ) |
80 |
79
|
3imp |
⊢ ( ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑈 ∈ 𝑉 ) → 𝑔 ∈ ( 𝑥 RingHom 𝑦 ) ) |
81 |
1 2 64 26 66 66 68 71 80
|
ringccoALTV |
⊢ ( ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑈 ∈ 𝑉 ) → ( 𝑔 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) ( I ↾ ( Base ‘ 𝑥 ) ) ) = ( 𝑔 ∘ ( I ↾ ( Base ‘ 𝑥 ) ) ) ) |
82 |
1 2 72 21 73 74
|
elringchomALTV |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ) → ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) → 𝑔 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) ) |
83 |
82
|
ex |
⊢ ( 𝑈 ∈ 𝑉 → ( ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) → 𝑔 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) ) ) |
84 |
83
|
com13 |
⊢ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) → ( ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑈 ∈ 𝑉 → 𝑔 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) ) ) |
85 |
84
|
3imp |
⊢ ( ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑈 ∈ 𝑉 ) → 𝑔 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) |
86 |
|
fcoi1 |
⊢ ( 𝑔 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) → ( 𝑔 ∘ ( I ↾ ( Base ‘ 𝑥 ) ) ) = 𝑔 ) |
87 |
85 86
|
syl |
⊢ ( ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑈 ∈ 𝑉 ) → ( 𝑔 ∘ ( I ↾ ( Base ‘ 𝑥 ) ) ) = 𝑔 ) |
88 |
81 87
|
eqtrd |
⊢ ( ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑈 ∈ 𝑉 ) → ( 𝑔 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) ( I ↾ ( Base ‘ 𝑥 ) ) ) = 𝑔 ) |
89 |
88
|
3exp |
⊢ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) → ( ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑈 ∈ 𝑉 → ( 𝑔 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) ( I ↾ ( Base ‘ 𝑥 ) ) ) = 𝑔 ) ) ) |
90 |
89
|
3ad2ant2 |
⊢ ( ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) → ( ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑈 ∈ 𝑉 → ( 𝑔 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) ( I ↾ ( Base ‘ 𝑥 ) ) ) = 𝑔 ) ) ) |
91 |
90
|
expdcom |
⊢ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) → ( 𝑈 ∈ 𝑉 → ( 𝑔 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) ( I ↾ ( Base ‘ 𝑥 ) ) ) = 𝑔 ) ) ) ) |
92 |
91
|
3imp |
⊢ ( ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( 𝑈 ∈ 𝑉 → ( 𝑔 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) ( I ↾ ( Base ‘ 𝑥 ) ) ) = 𝑔 ) ) |
93 |
92
|
impcom |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) ( I ↾ ( Base ‘ 𝑥 ) ) ) = 𝑔 ) |
94 |
|
simpl |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) |
95 |
94
|
3ad2ant2 |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) |
96 |
1 2 33 21 35 95
|
ringchomALTV |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) → ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) = ( 𝑥 RingHom 𝑦 ) ) |
97 |
96
|
eleq2d |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) → ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↔ 𝑔 ∈ ( 𝑥 RingHom 𝑦 ) ) ) |
98 |
97
|
biimpd |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) → ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) → 𝑔 ∈ ( 𝑥 RingHom 𝑦 ) ) ) |
99 |
98
|
3exp |
⊢ ( 𝑈 ∈ 𝑉 → ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) → 𝑔 ∈ ( 𝑥 RingHom 𝑦 ) ) ) ) ) |
100 |
99
|
com14 |
⊢ ( 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) → ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑈 ∈ 𝑉 → 𝑔 ∈ ( 𝑥 RingHom 𝑦 ) ) ) ) ) |
101 |
100
|
3ad2ant2 |
⊢ ( ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) → ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑈 ∈ 𝑉 → 𝑔 ∈ ( 𝑥 RingHom 𝑦 ) ) ) ) ) |
102 |
101
|
com13 |
⊢ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) → ( 𝑈 ∈ 𝑉 → 𝑔 ∈ ( 𝑥 RingHom 𝑦 ) ) ) ) ) |
103 |
102
|
3imp |
⊢ ( ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( 𝑈 ∈ 𝑉 → 𝑔 ∈ ( 𝑥 RingHom 𝑦 ) ) ) |
104 |
103
|
impcom |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → 𝑔 ∈ ( 𝑥 RingHom 𝑦 ) ) |
105 |
|
rhmco |
⊢ ( ( 𝑔 ∈ ( 𝑥 RingHom 𝑦 ) ∧ 𝑓 ∈ ( 𝑤 RingHom 𝑥 ) ) → ( 𝑔 ∘ 𝑓 ) ∈ ( 𝑤 RingHom 𝑦 ) ) |
106 |
104 44 105
|
syl2anc |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( 𝑔 ∘ 𝑓 ) ∈ ( 𝑤 RingHom 𝑦 ) ) |
107 |
94
|
3ad2ant2 |
⊢ ( ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → 𝑦 ∈ 𝐵 ) |
108 |
107
|
adantl |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → 𝑦 ∈ 𝐵 ) |
109 |
1 2 25 26 29 32 108 44 104
|
ringccoALTV |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( 𝑔 ( 〈 𝑤 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑓 ) = ( 𝑔 ∘ 𝑓 ) ) |
110 |
1 2 25 21 29 108
|
ringchomALTV |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( 𝑤 ( Hom ‘ 𝐶 ) 𝑦 ) = ( 𝑤 RingHom 𝑦 ) ) |
111 |
106 109 110
|
3eltr4d |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( 𝑔 ( 〈 𝑤 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑓 ) ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
112 |
|
coass |
⊢ ( ( ℎ ∘ 𝑔 ) ∘ 𝑓 ) = ( ℎ ∘ ( 𝑔 ∘ 𝑓 ) ) |
113 |
|
simp2r |
⊢ ( ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → 𝑧 ∈ 𝐵 ) |
114 |
113
|
adantl |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → 𝑧 ∈ 𝐵 ) |
115 |
|
simp2r |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) → 𝑧 ∈ 𝐵 ) |
116 |
1 2 33 21 95 115
|
ringchomALTV |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) → ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) = ( 𝑦 RingHom 𝑧 ) ) |
117 |
116
|
eleq2d |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) → ( ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ↔ ℎ ∈ ( 𝑦 RingHom 𝑧 ) ) ) |
118 |
117
|
biimpd |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) → ( ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) → ℎ ∈ ( 𝑦 RingHom 𝑧 ) ) ) |
119 |
118
|
3exp |
⊢ ( 𝑈 ∈ 𝑉 → ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) → ℎ ∈ ( 𝑦 RingHom 𝑧 ) ) ) ) ) |
120 |
119
|
com14 |
⊢ ( ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) → ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑈 ∈ 𝑉 → ℎ ∈ ( 𝑦 RingHom 𝑧 ) ) ) ) ) |
121 |
120
|
3ad2ant3 |
⊢ ( ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) → ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑈 ∈ 𝑉 → ℎ ∈ ( 𝑦 RingHom 𝑧 ) ) ) ) ) |
122 |
121
|
com13 |
⊢ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) → ( 𝑈 ∈ 𝑉 → ℎ ∈ ( 𝑦 RingHom 𝑧 ) ) ) ) ) |
123 |
122
|
3imp |
⊢ ( ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( 𝑈 ∈ 𝑉 → ℎ ∈ ( 𝑦 RingHom 𝑧 ) ) ) |
124 |
123
|
impcom |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ℎ ∈ ( 𝑦 RingHom 𝑧 ) ) |
125 |
|
rhmco |
⊢ ( ( ℎ ∈ ( 𝑦 RingHom 𝑧 ) ∧ 𝑔 ∈ ( 𝑥 RingHom 𝑦 ) ) → ( ℎ ∘ 𝑔 ) ∈ ( 𝑥 RingHom 𝑧 ) ) |
126 |
124 104 125
|
syl2anc |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( ℎ ∘ 𝑔 ) ∈ ( 𝑥 RingHom 𝑧 ) ) |
127 |
1 2 25 26 29 32 114 44 126
|
ringccoALTV |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( ( ℎ ∘ 𝑔 ) ( 〈 𝑤 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) = ( ( ℎ ∘ 𝑔 ) ∘ 𝑓 ) ) |
128 |
1 2 25 26 29 108 114 106 124
|
ringccoALTV |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( ℎ ( 〈 𝑤 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) ( 𝑔 ∘ 𝑓 ) ) = ( ℎ ∘ ( 𝑔 ∘ 𝑓 ) ) ) |
129 |
112 127 128
|
3eqtr4a |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( ( ℎ ∘ 𝑔 ) ( 〈 𝑤 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) = ( ℎ ( 〈 𝑤 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) ( 𝑔 ∘ 𝑓 ) ) ) |
130 |
1 2 25 26 32 108 114 104 124
|
ringccoALTV |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( ℎ ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑔 ) = ( ℎ ∘ 𝑔 ) ) |
131 |
130
|
oveq1d |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( ( ℎ ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑔 ) ( 〈 𝑤 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) = ( ( ℎ ∘ 𝑔 ) ( 〈 𝑤 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) |
132 |
109
|
oveq2d |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( ℎ ( 〈 𝑤 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑤 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑓 ) ) = ( ℎ ( 〈 𝑤 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) ( 𝑔 ∘ 𝑓 ) ) ) |
133 |
129 131 132
|
3eqtr4d |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ ( ( 𝑤 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) ) → ( ( ℎ ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑔 ) ( 〈 𝑤 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) = ( ℎ ( 〈 𝑤 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑤 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑓 ) ) ) |
134 |
3 4 5 7 8 24 63 93 111 133
|
iscatd2 |
⊢ ( 𝑈 ∈ 𝑉 → ( 𝐶 ∈ Cat ∧ ( Id ‘ 𝐶 ) = ( 𝑥 ∈ 𝐵 ↦ ( I ↾ ( Base ‘ 𝑥 ) ) ) ) ) |