| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ringcbasALTV.c |
⊢ 𝐶 = ( RingCatALTV ‘ 𝑈 ) |
| 2 |
|
ringcbasALTV.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 3 |
|
ringcbasALTV.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
| 4 |
|
ringchomfvalALTV.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
| 5 |
|
ringchomALTV.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 6 |
|
ringchomALTV.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 7 |
1 2 3 4 5 6
|
ringchomALTV |
⊢ ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( 𝑋 RingHom 𝑌 ) ) |
| 8 |
7
|
eleq2d |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ↔ 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ) ) |
| 9 |
|
eqid |
⊢ ( Base ‘ 𝑋 ) = ( Base ‘ 𝑋 ) |
| 10 |
|
eqid |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) |
| 11 |
9 10
|
rhmf |
⊢ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) → 𝐹 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ) |
| 12 |
8 11
|
biimtrdi |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) → 𝐹 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ) ) |