Step |
Hyp |
Ref |
Expression |
1 |
|
ringcbasALTV.c |
⊢ 𝐶 = ( RingCatALTV ‘ 𝑈 ) |
2 |
|
ringcbasALTV.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
3 |
|
ringcbasALTV.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
4 |
|
ringccoALTV.o |
⊢ · = ( comp ‘ 𝐶 ) |
5 |
1 2 3
|
ringcbasALTV |
⊢ ( 𝜑 → 𝐵 = ( 𝑈 ∩ Ring ) ) |
6 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
7 |
1 2 3 6
|
ringchomfvalALTV |
⊢ ( 𝜑 → ( Hom ‘ 𝐶 ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 RingHom 𝑦 ) ) ) |
8 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑣 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑣 ) RingHom 𝑧 ) , 𝑓 ∈ ( ( 1st ‘ 𝑣 ) RingHom ( 2nd ‘ 𝑣 ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) = ( 𝑣 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑣 ) RingHom 𝑧 ) , 𝑓 ∈ ( ( 1st ‘ 𝑣 ) RingHom ( 2nd ‘ 𝑣 ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) ) |
9 |
1 3 5 7 8
|
ringcvalALTV |
⊢ ( 𝜑 → 𝐶 = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( Hom ‘ ndx ) , ( Hom ‘ 𝐶 ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑣 ) RingHom 𝑧 ) , 𝑓 ∈ ( ( 1st ‘ 𝑣 ) RingHom ( 2nd ‘ 𝑣 ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) 〉 } ) |
10 |
9
|
fveq2d |
⊢ ( 𝜑 → ( comp ‘ 𝐶 ) = ( comp ‘ { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( Hom ‘ ndx ) , ( Hom ‘ 𝐶 ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑣 ) RingHom 𝑧 ) , 𝑓 ∈ ( ( 1st ‘ 𝑣 ) RingHom ( 2nd ‘ 𝑣 ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) 〉 } ) ) |
11 |
2
|
fvexi |
⊢ 𝐵 ∈ V |
12 |
|
sqxpexg |
⊢ ( 𝐵 ∈ V → ( 𝐵 × 𝐵 ) ∈ V ) |
13 |
11 12
|
ax-mp |
⊢ ( 𝐵 × 𝐵 ) ∈ V |
14 |
13 11
|
mpoex |
⊢ ( 𝑣 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑣 ) RingHom 𝑧 ) , 𝑓 ∈ ( ( 1st ‘ 𝑣 ) RingHom ( 2nd ‘ 𝑣 ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) ∈ V |
15 |
|
catstr |
⊢ { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( Hom ‘ ndx ) , ( Hom ‘ 𝐶 ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑣 ) RingHom 𝑧 ) , 𝑓 ∈ ( ( 1st ‘ 𝑣 ) RingHom ( 2nd ‘ 𝑣 ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) 〉 } Struct 〈 1 , ; 1 5 〉 |
16 |
|
ccoid |
⊢ comp = Slot ( comp ‘ ndx ) |
17 |
|
snsstp3 |
⊢ { 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑣 ) RingHom 𝑧 ) , 𝑓 ∈ ( ( 1st ‘ 𝑣 ) RingHom ( 2nd ‘ 𝑣 ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) 〉 } ⊆ { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( Hom ‘ ndx ) , ( Hom ‘ 𝐶 ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑣 ) RingHom 𝑧 ) , 𝑓 ∈ ( ( 1st ‘ 𝑣 ) RingHom ( 2nd ‘ 𝑣 ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) 〉 } |
18 |
15 16 17
|
strfv |
⊢ ( ( 𝑣 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑣 ) RingHom 𝑧 ) , 𝑓 ∈ ( ( 1st ‘ 𝑣 ) RingHom ( 2nd ‘ 𝑣 ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) ∈ V → ( 𝑣 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑣 ) RingHom 𝑧 ) , 𝑓 ∈ ( ( 1st ‘ 𝑣 ) RingHom ( 2nd ‘ 𝑣 ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) = ( comp ‘ { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( Hom ‘ ndx ) , ( Hom ‘ 𝐶 ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑣 ) RingHom 𝑧 ) , 𝑓 ∈ ( ( 1st ‘ 𝑣 ) RingHom ( 2nd ‘ 𝑣 ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) 〉 } ) ) |
19 |
14 18
|
ax-mp |
⊢ ( 𝑣 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑣 ) RingHom 𝑧 ) , 𝑓 ∈ ( ( 1st ‘ 𝑣 ) RingHom ( 2nd ‘ 𝑣 ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) = ( comp ‘ { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( Hom ‘ ndx ) , ( Hom ‘ 𝐶 ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑣 ) RingHom 𝑧 ) , 𝑓 ∈ ( ( 1st ‘ 𝑣 ) RingHom ( 2nd ‘ 𝑣 ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) 〉 } ) |
20 |
10 4 19
|
3eqtr4g |
⊢ ( 𝜑 → · = ( 𝑣 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑣 ) RingHom 𝑧 ) , 𝑓 ∈ ( ( 1st ‘ 𝑣 ) RingHom ( 2nd ‘ 𝑣 ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) ) |