| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ringcvalALTV.c |
⊢ 𝐶 = ( RingCatALTV ‘ 𝑈 ) |
| 2 |
|
ringcvalALTV.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
| 3 |
|
ringcvalALTV.b |
⊢ ( 𝜑 → 𝐵 = ( 𝑈 ∩ Ring ) ) |
| 4 |
|
ringcvalALTV.h |
⊢ ( 𝜑 → 𝐻 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 RingHom 𝑦 ) ) ) |
| 5 |
|
ringcvalALTV.o |
⊢ ( 𝜑 → · = ( 𝑣 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑣 ) RingHom 𝑧 ) , 𝑓 ∈ ( ( 1st ‘ 𝑣 ) RingHom ( 2nd ‘ 𝑣 ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) ) |
| 6 |
|
df-ringcALTV |
⊢ RingCatALTV = ( 𝑢 ∈ V ↦ ⦋ ( 𝑢 ∩ Ring ) / 𝑏 ⦌ { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( Hom ‘ ndx ) , ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ ( 𝑥 RingHom 𝑦 ) ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝑏 × 𝑏 ) , 𝑧 ∈ 𝑏 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑣 ) RingHom 𝑧 ) , 𝑓 ∈ ( ( 1st ‘ 𝑣 ) RingHom ( 2nd ‘ 𝑣 ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) 〉 } ) |
| 7 |
6
|
a1i |
⊢ ( 𝜑 → RingCatALTV = ( 𝑢 ∈ V ↦ ⦋ ( 𝑢 ∩ Ring ) / 𝑏 ⦌ { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( Hom ‘ ndx ) , ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ ( 𝑥 RingHom 𝑦 ) ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝑏 × 𝑏 ) , 𝑧 ∈ 𝑏 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑣 ) RingHom 𝑧 ) , 𝑓 ∈ ( ( 1st ‘ 𝑣 ) RingHom ( 2nd ‘ 𝑣 ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) 〉 } ) ) |
| 8 |
|
vex |
⊢ 𝑢 ∈ V |
| 9 |
8
|
inex1 |
⊢ ( 𝑢 ∩ Ring ) ∈ V |
| 10 |
9
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑢 = 𝑈 ) → ( 𝑢 ∩ Ring ) ∈ V ) |
| 11 |
|
ineq1 |
⊢ ( 𝑢 = 𝑈 → ( 𝑢 ∩ Ring ) = ( 𝑈 ∩ Ring ) ) |
| 12 |
11
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑢 = 𝑈 ) → ( 𝑢 ∩ Ring ) = ( 𝑈 ∩ Ring ) ) |
| 13 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 = 𝑈 ) → 𝐵 = ( 𝑈 ∩ Ring ) ) |
| 14 |
12 13
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑢 = 𝑈 ) → ( 𝑢 ∩ Ring ) = 𝐵 ) |
| 15 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑢 = 𝑈 ) ∧ 𝑏 = 𝐵 ) → 𝑏 = 𝐵 ) |
| 16 |
15
|
opeq2d |
⊢ ( ( ( 𝜑 ∧ 𝑢 = 𝑈 ) ∧ 𝑏 = 𝐵 ) → 〈 ( Base ‘ ndx ) , 𝑏 〉 = 〈 ( Base ‘ ndx ) , 𝐵 〉 ) |
| 17 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑢 = 𝑈 ) ∧ 𝑏 = 𝐵 ) → ( 𝑥 RingHom 𝑦 ) = ( 𝑥 RingHom 𝑦 ) ) |
| 18 |
15 15 17
|
mpoeq123dv |
⊢ ( ( ( 𝜑 ∧ 𝑢 = 𝑈 ) ∧ 𝑏 = 𝐵 ) → ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ ( 𝑥 RingHom 𝑦 ) ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 RingHom 𝑦 ) ) ) |
| 19 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑢 = 𝑈 ) ∧ 𝑏 = 𝐵 ) → 𝐻 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 RingHom 𝑦 ) ) ) |
| 20 |
18 19
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑢 = 𝑈 ) ∧ 𝑏 = 𝐵 ) → ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ ( 𝑥 RingHom 𝑦 ) ) = 𝐻 ) |
| 21 |
20
|
opeq2d |
⊢ ( ( ( 𝜑 ∧ 𝑢 = 𝑈 ) ∧ 𝑏 = 𝐵 ) → 〈 ( Hom ‘ ndx ) , ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ ( 𝑥 RingHom 𝑦 ) ) 〉 = 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) |
| 22 |
15
|
sqxpeqd |
⊢ ( ( ( 𝜑 ∧ 𝑢 = 𝑈 ) ∧ 𝑏 = 𝐵 ) → ( 𝑏 × 𝑏 ) = ( 𝐵 × 𝐵 ) ) |
| 23 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑢 = 𝑈 ) ∧ 𝑏 = 𝐵 ) → ( 𝑔 ∈ ( ( 2nd ‘ 𝑣 ) RingHom 𝑧 ) , 𝑓 ∈ ( ( 1st ‘ 𝑣 ) RingHom ( 2nd ‘ 𝑣 ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) = ( 𝑔 ∈ ( ( 2nd ‘ 𝑣 ) RingHom 𝑧 ) , 𝑓 ∈ ( ( 1st ‘ 𝑣 ) RingHom ( 2nd ‘ 𝑣 ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) |
| 24 |
22 15 23
|
mpoeq123dv |
⊢ ( ( ( 𝜑 ∧ 𝑢 = 𝑈 ) ∧ 𝑏 = 𝐵 ) → ( 𝑣 ∈ ( 𝑏 × 𝑏 ) , 𝑧 ∈ 𝑏 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑣 ) RingHom 𝑧 ) , 𝑓 ∈ ( ( 1st ‘ 𝑣 ) RingHom ( 2nd ‘ 𝑣 ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) = ( 𝑣 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑣 ) RingHom 𝑧 ) , 𝑓 ∈ ( ( 1st ‘ 𝑣 ) RingHom ( 2nd ‘ 𝑣 ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) ) |
| 25 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑢 = 𝑈 ) ∧ 𝑏 = 𝐵 ) → · = ( 𝑣 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑣 ) RingHom 𝑧 ) , 𝑓 ∈ ( ( 1st ‘ 𝑣 ) RingHom ( 2nd ‘ 𝑣 ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) ) |
| 26 |
24 25
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑢 = 𝑈 ) ∧ 𝑏 = 𝐵 ) → ( 𝑣 ∈ ( 𝑏 × 𝑏 ) , 𝑧 ∈ 𝑏 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑣 ) RingHom 𝑧 ) , 𝑓 ∈ ( ( 1st ‘ 𝑣 ) RingHom ( 2nd ‘ 𝑣 ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) = · ) |
| 27 |
26
|
opeq2d |
⊢ ( ( ( 𝜑 ∧ 𝑢 = 𝑈 ) ∧ 𝑏 = 𝐵 ) → 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝑏 × 𝑏 ) , 𝑧 ∈ 𝑏 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑣 ) RingHom 𝑧 ) , 𝑓 ∈ ( ( 1st ‘ 𝑣 ) RingHom ( 2nd ‘ 𝑣 ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) 〉 = 〈 ( comp ‘ ndx ) , · 〉 ) |
| 28 |
16 21 27
|
tpeq123d |
⊢ ( ( ( 𝜑 ∧ 𝑢 = 𝑈 ) ∧ 𝑏 = 𝐵 ) → { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( Hom ‘ ndx ) , ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ ( 𝑥 RingHom 𝑦 ) ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝑏 × 𝑏 ) , 𝑧 ∈ 𝑏 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑣 ) RingHom 𝑧 ) , 𝑓 ∈ ( ( 1st ‘ 𝑣 ) RingHom ( 2nd ‘ 𝑣 ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) 〉 } = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , · 〉 } ) |
| 29 |
10 14 28
|
csbied2 |
⊢ ( ( 𝜑 ∧ 𝑢 = 𝑈 ) → ⦋ ( 𝑢 ∩ Ring ) / 𝑏 ⦌ { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( Hom ‘ ndx ) , ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ ( 𝑥 RingHom 𝑦 ) ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝑏 × 𝑏 ) , 𝑧 ∈ 𝑏 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑣 ) RingHom 𝑧 ) , 𝑓 ∈ ( ( 1st ‘ 𝑣 ) RingHom ( 2nd ‘ 𝑣 ) ) ↦ ( 𝑔 ∘ 𝑓 ) ) ) 〉 } = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , · 〉 } ) |
| 30 |
|
elex |
⊢ ( 𝑈 ∈ 𝑉 → 𝑈 ∈ V ) |
| 31 |
2 30
|
syl |
⊢ ( 𝜑 → 𝑈 ∈ V ) |
| 32 |
|
tpex |
⊢ { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , · 〉 } ∈ V |
| 33 |
32
|
a1i |
⊢ ( 𝜑 → { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , · 〉 } ∈ V ) |
| 34 |
7 29 31 33
|
fvmptd |
⊢ ( 𝜑 → ( RingCatALTV ‘ 𝑈 ) = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , · 〉 } ) |
| 35 |
1 34
|
eqtrid |
⊢ ( 𝜑 → 𝐶 = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , · 〉 } ) |