| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ringcvalALTV.c |
|- C = ( RingCatALTV ` U ) |
| 2 |
|
ringcvalALTV.u |
|- ( ph -> U e. V ) |
| 3 |
|
ringcvalALTV.b |
|- ( ph -> B = ( U i^i Ring ) ) |
| 4 |
|
ringcvalALTV.h |
|- ( ph -> H = ( x e. B , y e. B |-> ( x RingHom y ) ) ) |
| 5 |
|
ringcvalALTV.o |
|- ( ph -> .x. = ( v e. ( B X. B ) , z e. B |-> ( g e. ( ( 2nd ` v ) RingHom z ) , f e. ( ( 1st ` v ) RingHom ( 2nd ` v ) ) |-> ( g o. f ) ) ) ) |
| 6 |
|
df-ringcALTV |
|- RingCatALTV = ( u e. _V |-> [_ ( u i^i Ring ) / b ]_ { <. ( Base ` ndx ) , b >. , <. ( Hom ` ndx ) , ( x e. b , y e. b |-> ( x RingHom y ) ) >. , <. ( comp ` ndx ) , ( v e. ( b X. b ) , z e. b |-> ( g e. ( ( 2nd ` v ) RingHom z ) , f e. ( ( 1st ` v ) RingHom ( 2nd ` v ) ) |-> ( g o. f ) ) ) >. } ) |
| 7 |
6
|
a1i |
|- ( ph -> RingCatALTV = ( u e. _V |-> [_ ( u i^i Ring ) / b ]_ { <. ( Base ` ndx ) , b >. , <. ( Hom ` ndx ) , ( x e. b , y e. b |-> ( x RingHom y ) ) >. , <. ( comp ` ndx ) , ( v e. ( b X. b ) , z e. b |-> ( g e. ( ( 2nd ` v ) RingHom z ) , f e. ( ( 1st ` v ) RingHom ( 2nd ` v ) ) |-> ( g o. f ) ) ) >. } ) ) |
| 8 |
|
vex |
|- u e. _V |
| 9 |
8
|
inex1 |
|- ( u i^i Ring ) e. _V |
| 10 |
9
|
a1i |
|- ( ( ph /\ u = U ) -> ( u i^i Ring ) e. _V ) |
| 11 |
|
ineq1 |
|- ( u = U -> ( u i^i Ring ) = ( U i^i Ring ) ) |
| 12 |
11
|
adantl |
|- ( ( ph /\ u = U ) -> ( u i^i Ring ) = ( U i^i Ring ) ) |
| 13 |
3
|
adantr |
|- ( ( ph /\ u = U ) -> B = ( U i^i Ring ) ) |
| 14 |
12 13
|
eqtr4d |
|- ( ( ph /\ u = U ) -> ( u i^i Ring ) = B ) |
| 15 |
|
simpr |
|- ( ( ( ph /\ u = U ) /\ b = B ) -> b = B ) |
| 16 |
15
|
opeq2d |
|- ( ( ( ph /\ u = U ) /\ b = B ) -> <. ( Base ` ndx ) , b >. = <. ( Base ` ndx ) , B >. ) |
| 17 |
|
eqidd |
|- ( ( ( ph /\ u = U ) /\ b = B ) -> ( x RingHom y ) = ( x RingHom y ) ) |
| 18 |
15 15 17
|
mpoeq123dv |
|- ( ( ( ph /\ u = U ) /\ b = B ) -> ( x e. b , y e. b |-> ( x RingHom y ) ) = ( x e. B , y e. B |-> ( x RingHom y ) ) ) |
| 19 |
4
|
ad2antrr |
|- ( ( ( ph /\ u = U ) /\ b = B ) -> H = ( x e. B , y e. B |-> ( x RingHom y ) ) ) |
| 20 |
18 19
|
eqtr4d |
|- ( ( ( ph /\ u = U ) /\ b = B ) -> ( x e. b , y e. b |-> ( x RingHom y ) ) = H ) |
| 21 |
20
|
opeq2d |
|- ( ( ( ph /\ u = U ) /\ b = B ) -> <. ( Hom ` ndx ) , ( x e. b , y e. b |-> ( x RingHom y ) ) >. = <. ( Hom ` ndx ) , H >. ) |
| 22 |
15
|
sqxpeqd |
|- ( ( ( ph /\ u = U ) /\ b = B ) -> ( b X. b ) = ( B X. B ) ) |
| 23 |
|
eqidd |
|- ( ( ( ph /\ u = U ) /\ b = B ) -> ( g e. ( ( 2nd ` v ) RingHom z ) , f e. ( ( 1st ` v ) RingHom ( 2nd ` v ) ) |-> ( g o. f ) ) = ( g e. ( ( 2nd ` v ) RingHom z ) , f e. ( ( 1st ` v ) RingHom ( 2nd ` v ) ) |-> ( g o. f ) ) ) |
| 24 |
22 15 23
|
mpoeq123dv |
|- ( ( ( ph /\ u = U ) /\ b = B ) -> ( v e. ( b X. b ) , z e. b |-> ( g e. ( ( 2nd ` v ) RingHom z ) , f e. ( ( 1st ` v ) RingHom ( 2nd ` v ) ) |-> ( g o. f ) ) ) = ( v e. ( B X. B ) , z e. B |-> ( g e. ( ( 2nd ` v ) RingHom z ) , f e. ( ( 1st ` v ) RingHom ( 2nd ` v ) ) |-> ( g o. f ) ) ) ) |
| 25 |
5
|
ad2antrr |
|- ( ( ( ph /\ u = U ) /\ b = B ) -> .x. = ( v e. ( B X. B ) , z e. B |-> ( g e. ( ( 2nd ` v ) RingHom z ) , f e. ( ( 1st ` v ) RingHom ( 2nd ` v ) ) |-> ( g o. f ) ) ) ) |
| 26 |
24 25
|
eqtr4d |
|- ( ( ( ph /\ u = U ) /\ b = B ) -> ( v e. ( b X. b ) , z e. b |-> ( g e. ( ( 2nd ` v ) RingHom z ) , f e. ( ( 1st ` v ) RingHom ( 2nd ` v ) ) |-> ( g o. f ) ) ) = .x. ) |
| 27 |
26
|
opeq2d |
|- ( ( ( ph /\ u = U ) /\ b = B ) -> <. ( comp ` ndx ) , ( v e. ( b X. b ) , z e. b |-> ( g e. ( ( 2nd ` v ) RingHom z ) , f e. ( ( 1st ` v ) RingHom ( 2nd ` v ) ) |-> ( g o. f ) ) ) >. = <. ( comp ` ndx ) , .x. >. ) |
| 28 |
16 21 27
|
tpeq123d |
|- ( ( ( ph /\ u = U ) /\ b = B ) -> { <. ( Base ` ndx ) , b >. , <. ( Hom ` ndx ) , ( x e. b , y e. b |-> ( x RingHom y ) ) >. , <. ( comp ` ndx ) , ( v e. ( b X. b ) , z e. b |-> ( g e. ( ( 2nd ` v ) RingHom z ) , f e. ( ( 1st ` v ) RingHom ( 2nd ` v ) ) |-> ( g o. f ) ) ) >. } = { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } ) |
| 29 |
10 14 28
|
csbied2 |
|- ( ( ph /\ u = U ) -> [_ ( u i^i Ring ) / b ]_ { <. ( Base ` ndx ) , b >. , <. ( Hom ` ndx ) , ( x e. b , y e. b |-> ( x RingHom y ) ) >. , <. ( comp ` ndx ) , ( v e. ( b X. b ) , z e. b |-> ( g e. ( ( 2nd ` v ) RingHom z ) , f e. ( ( 1st ` v ) RingHom ( 2nd ` v ) ) |-> ( g o. f ) ) ) >. } = { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } ) |
| 30 |
|
elex |
|- ( U e. V -> U e. _V ) |
| 31 |
2 30
|
syl |
|- ( ph -> U e. _V ) |
| 32 |
|
tpex |
|- { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } e. _V |
| 33 |
32
|
a1i |
|- ( ph -> { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } e. _V ) |
| 34 |
7 29 31 33
|
fvmptd |
|- ( ph -> ( RingCatALTV ` U ) = { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } ) |
| 35 |
1 34
|
eqtrid |
|- ( ph -> C = { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } ) |