Step |
Hyp |
Ref |
Expression |
1 |
|
ringcbasALTV.c |
|- C = ( RingCatALTV ` U ) |
2 |
|
ringcbasALTV.b |
|- B = ( Base ` C ) |
3 |
|
ringcbasALTV.u |
|- ( ph -> U e. V ) |
4 |
|
ringccoALTV.o |
|- .x. = ( comp ` C ) |
5 |
1 2 3
|
ringcbasALTV |
|- ( ph -> B = ( U i^i Ring ) ) |
6 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
7 |
1 2 3 6
|
ringchomfvalALTV |
|- ( ph -> ( Hom ` C ) = ( x e. B , y e. B |-> ( x RingHom y ) ) ) |
8 |
|
eqidd |
|- ( ph -> ( v e. ( B X. B ) , z e. B |-> ( g e. ( ( 2nd ` v ) RingHom z ) , f e. ( ( 1st ` v ) RingHom ( 2nd ` v ) ) |-> ( g o. f ) ) ) = ( v e. ( B X. B ) , z e. B |-> ( g e. ( ( 2nd ` v ) RingHom z ) , f e. ( ( 1st ` v ) RingHom ( 2nd ` v ) ) |-> ( g o. f ) ) ) ) |
9 |
1 3 5 7 8
|
ringcvalALTV |
|- ( ph -> C = { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , ( Hom ` C ) >. , <. ( comp ` ndx ) , ( v e. ( B X. B ) , z e. B |-> ( g e. ( ( 2nd ` v ) RingHom z ) , f e. ( ( 1st ` v ) RingHom ( 2nd ` v ) ) |-> ( g o. f ) ) ) >. } ) |
10 |
9
|
fveq2d |
|- ( ph -> ( comp ` C ) = ( comp ` { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , ( Hom ` C ) >. , <. ( comp ` ndx ) , ( v e. ( B X. B ) , z e. B |-> ( g e. ( ( 2nd ` v ) RingHom z ) , f e. ( ( 1st ` v ) RingHom ( 2nd ` v ) ) |-> ( g o. f ) ) ) >. } ) ) |
11 |
2
|
fvexi |
|- B e. _V |
12 |
|
sqxpexg |
|- ( B e. _V -> ( B X. B ) e. _V ) |
13 |
11 12
|
ax-mp |
|- ( B X. B ) e. _V |
14 |
13 11
|
mpoex |
|- ( v e. ( B X. B ) , z e. B |-> ( g e. ( ( 2nd ` v ) RingHom z ) , f e. ( ( 1st ` v ) RingHom ( 2nd ` v ) ) |-> ( g o. f ) ) ) e. _V |
15 |
|
catstr |
|- { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , ( Hom ` C ) >. , <. ( comp ` ndx ) , ( v e. ( B X. B ) , z e. B |-> ( g e. ( ( 2nd ` v ) RingHom z ) , f e. ( ( 1st ` v ) RingHom ( 2nd ` v ) ) |-> ( g o. f ) ) ) >. } Struct <. 1 , ; 1 5 >. |
16 |
|
ccoid |
|- comp = Slot ( comp ` ndx ) |
17 |
|
snsstp3 |
|- { <. ( comp ` ndx ) , ( v e. ( B X. B ) , z e. B |-> ( g e. ( ( 2nd ` v ) RingHom z ) , f e. ( ( 1st ` v ) RingHom ( 2nd ` v ) ) |-> ( g o. f ) ) ) >. } C_ { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , ( Hom ` C ) >. , <. ( comp ` ndx ) , ( v e. ( B X. B ) , z e. B |-> ( g e. ( ( 2nd ` v ) RingHom z ) , f e. ( ( 1st ` v ) RingHom ( 2nd ` v ) ) |-> ( g o. f ) ) ) >. } |
18 |
15 16 17
|
strfv |
|- ( ( v e. ( B X. B ) , z e. B |-> ( g e. ( ( 2nd ` v ) RingHom z ) , f e. ( ( 1st ` v ) RingHom ( 2nd ` v ) ) |-> ( g o. f ) ) ) e. _V -> ( v e. ( B X. B ) , z e. B |-> ( g e. ( ( 2nd ` v ) RingHom z ) , f e. ( ( 1st ` v ) RingHom ( 2nd ` v ) ) |-> ( g o. f ) ) ) = ( comp ` { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , ( Hom ` C ) >. , <. ( comp ` ndx ) , ( v e. ( B X. B ) , z e. B |-> ( g e. ( ( 2nd ` v ) RingHom z ) , f e. ( ( 1st ` v ) RingHom ( 2nd ` v ) ) |-> ( g o. f ) ) ) >. } ) ) |
19 |
14 18
|
ax-mp |
|- ( v e. ( B X. B ) , z e. B |-> ( g e. ( ( 2nd ` v ) RingHom z ) , f e. ( ( 1st ` v ) RingHom ( 2nd ` v ) ) |-> ( g o. f ) ) ) = ( comp ` { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , ( Hom ` C ) >. , <. ( comp ` ndx ) , ( v e. ( B X. B ) , z e. B |-> ( g e. ( ( 2nd ` v ) RingHom z ) , f e. ( ( 1st ` v ) RingHom ( 2nd ` v ) ) |-> ( g o. f ) ) ) >. } ) |
20 |
10 4 19
|
3eqtr4g |
|- ( ph -> .x. = ( v e. ( B X. B ) , z e. B |-> ( g e. ( ( 2nd ` v ) RingHom z ) , f e. ( ( 1st ` v ) RingHom ( 2nd ` v ) ) |-> ( g o. f ) ) ) ) |