Metamath Proof Explorer


Theorem ringlzd

Description: The zero of a unital ring is a left-absorbing element. (Contributed by SN, 7-Mar-2025)

Ref Expression
Hypotheses ringlzd.b B=BaseR
ringlzd.t ·˙=R
ringlzd.z 0˙=0R
ringlzd.r φRRing
ringlzd.x φXB
Assertion ringlzd φ0˙·˙X=0˙

Proof

Step Hyp Ref Expression
1 ringlzd.b B=BaseR
2 ringlzd.t ·˙=R
3 ringlzd.z 0˙=0R
4 ringlzd.r φRRing
5 ringlzd.x φXB
6 1 2 3 ringlz RRingXB0˙·˙X=0˙
7 4 5 6 syl2anc φ0˙·˙X=0˙