Metamath Proof Explorer


Theorem riotasv

Description: Value of description binder D for a single-valued class expression C ( y ) (as in e.g. reusv2 ). Special case of riota2f . (Contributed by NM, 26-Jan-2013) (Proof shortened by Mario Carneiro, 6-Dec-2016)

Ref Expression
Hypotheses riotasv.1 AV
riotasv.2 D=ιxA|yBφx=C
Assertion riotasv DAyBφD=C

Proof

Step Hyp Ref Expression
1 riotasv.1 AV
2 riotasv.2 D=ιxA|yBφx=C
3 2 a1i DAD=ιxA|yBφx=C
4 id DADA
5 3 4 riotasvd DAAVyBφD=C
6 1 5 mpan2 DAyBφD=C
7 6 3impib DAyBφD=C