Metamath Proof Explorer


Theorem riotasvd

Description: Deduction version of riotasv . (Contributed by NM, 4-Mar-2013) (Revised by Mario Carneiro, 15-Oct-2016)

Ref Expression
Hypotheses riotasvd.1 φD=ιxA|yBψx=C
riotasvd.2 φDA
Assertion riotasvd φAVyBψD=C

Proof

Step Hyp Ref Expression
1 riotasvd.1 φD=ιxA|yBψx=C
2 riotasvd.2 φDA
3 1 adantr φAVD=ιxA|yBψx=C
4 2 adantr φAVDA
5 3 4 eqeltrrd φAVιxA|yBψx=CA
6 riotaclbgBAD AV∃!xAyBψx=CιxA|yBψx=CA
7 6 adantl φAV∃!xAyBψx=CιxA|yBψx=CA
8 5 7 mpbird φAV∃!xAyBψx=C
9 riotasbc ∃!xAyBψx=C[˙ιxA|yBψx=C/x]˙yBψx=C
10 8 9 syl φAV[˙ιxA|yBψx=C/x]˙yBψx=C
11 eqeq1 x=zx=Cz=C
12 11 imbi2d x=zψx=Cψz=C
13 12 ralbidv x=zyBψx=CyBψz=C
14 nfra1 yyBψx=C
15 nfcv _yA
16 14 15 nfriota _yιxA|yBψx=C
17 16 nfeq2 yz=ιxA|yBψx=C
18 eqeq1 z=ιxA|yBψx=Cz=CιxA|yBψx=C=C
19 18 imbi2d z=ιxA|yBψx=Cψz=CψιxA|yBψx=C=C
20 17 19 ralbid z=ιxA|yBψx=CyBψz=CyBψιxA|yBψx=C=C
21 13 20 sbcie2g ιxA|yBψx=CA[˙ιxA|yBψx=C/x]˙yBψx=CyBψιxA|yBψx=C=C
22 5 21 syl φAV[˙ιxA|yBψx=C/x]˙yBψx=CyBψιxA|yBψx=C=C
23 10 22 mpbid φAVyBψιxA|yBψx=C=C
24 rsp yBψιxA|yBψx=C=CyBψιxA|yBψx=C=C
25 23 24 syl φAVyBψιxA|yBψx=C=C
26 25 impd φAVyBψιxA|yBψx=C=C
27 3 eqeq1d φAVD=CιxA|yBψx=C=C
28 26 27 sylibrd φAVyBψD=C