Metamath Proof Explorer


Theorem sbcie2g

Description: Conversion of implicit substitution to explicit class substitution. This version of sbcie avoids a disjointness condition on x , A by substituting twice. (Contributed by Mario Carneiro, 15-Oct-2016)

Ref Expression
Hypotheses sbcie2g.1 x=yφψ
sbcie2g.2 y=Aψχ
Assertion sbcie2g AV[˙A/x]˙φχ

Proof

Step Hyp Ref Expression
1 sbcie2g.1 x=yφψ
2 sbcie2g.2 y=Aψχ
3 dfsbcq y=A[˙y/x]˙φ[˙A/x]˙φ
4 sbsbc yxφ[˙y/x]˙φ
5 1 sbievw yxφψ
6 4 5 bitr3i [˙y/x]˙φψ
7 3 2 6 vtoclbg AV[˙A/x]˙φχ