Metamath Proof Explorer


Theorem risefac1

Description: The value of rising factorial at one. (Contributed by Scott Fenton, 5-Jan-2018)

Ref Expression
Assertion risefac1 AA1=A

Proof

Step Hyp Ref Expression
1 0p1e1 0+1=1
2 1 oveq2i A0+1=A1
3 0nn0 00
4 risefacp1 A00A0+1=A0A+0
5 3 4 mpan2 AA0+1=A0A+0
6 risefac0 AA0=1
7 addrid AA+0=A
8 6 7 oveq12d AA0A+0=1A
9 mullid A1A=A
10 5 8 9 3eqtrd AA0+1=A
11 2 10 eqtr3id AA1=A