Metamath Proof Explorer


Theorem risefac0

Description: The value of the rising factorial when N = 0 . (Contributed by Scott Fenton, 5-Jan-2018)

Ref Expression
Assertion risefac0 AA0=1

Proof

Step Hyp Ref Expression
1 0nn0 00
2 risefacval A00A0=k=001A+k
3 1 2 mpan2 AA0=k=001A+k
4 risefall0lem 001=
5 4 prodeq1i k=001A+k=kA+k
6 prod0 kA+k=1
7 5 6 eqtri k=001A+k=1
8 3 7 eqtrdi AA0=1