Metamath Proof Explorer


Theorem risefall0lem

Description: Lemma for risefac0 and fallfac0 . Show a particular set of finite integers is empty. (Contributed by Scott Fenton, 5-Jan-2018)

Ref Expression
Assertion risefall0lem 0 0 1 =

Proof

Step Hyp Ref Expression
1 df-neg 1 = 0 1
2 1 oveq2i 0 1 = 0 0 1
3 neg1lt0 1 < 0
4 0z 0
5 neg1z 1
6 fzn 0 1 1 < 0 0 1 =
7 4 5 6 mp2an 1 < 0 0 1 =
8 3 7 mpbi 0 1 =
9 2 8 eqtr3i 0 0 1 =