Metamath Proof Explorer


Theorem rlimcn2

Description: Image of a limit under a continuous map, two-arg version. (Contributed by Mario Carneiro, 17-Sep-2014)

Ref Expression
Hypotheses rlimcn2.1a φ z A B X
rlimcn2.1b φ z A C Y
rlimcn2.2a φ R X
rlimcn2.2b φ S Y
rlimcn2.3a φ z A B R
rlimcn2.3b φ z A C S
rlimcn2.4 φ F : X × Y
rlimcn2.5 φ x + r + s + u X v Y u R < r v S < s u F v R F S < x
Assertion rlimcn2 φ z A B F C R F S

Proof

Step Hyp Ref Expression
1 rlimcn2.1a φ z A B X
2 rlimcn2.1b φ z A C Y
3 rlimcn2.2a φ R X
4 rlimcn2.2b φ S Y
5 rlimcn2.3a φ z A B R
6 rlimcn2.3b φ z A C S
7 rlimcn2.4 φ F : X × Y
8 rlimcn2.5 φ x + r + s + u X v Y u R < r v S < s u F v R F S < x
9 1 ralrimiva φ z A B X
10 9 adantr φ r + s + z A B X
11 simprl φ r + s + r +
12 5 adantr φ r + s + z A B R
13 10 11 12 rlimi φ r + s + a z A a z B R < r
14 2 ralrimiva φ z A C Y
15 14 adantr φ r + s + z A C Y
16 simprr φ r + s + s +
17 6 adantr φ r + s + z A C S
18 15 16 17 rlimi φ r + s + b z A b z C S < s
19 reeanv a b z A a z B R < r z A b z C S < s a z A a z B R < r b z A b z C S < s
20 r19.26 z A a z B R < r b z C S < s z A a z B R < r z A b z C S < s
21 anim12 a z B R < r b z C S < s a z b z B R < r C S < s
22 simplrl φ r + s + a b z A a
23 simplrr φ r + s + a b z A b
24 eqid z A B = z A B
25 24 1 dmmptd φ dom z A B = A
26 rlimss z A B R dom z A B
27 5 26 syl φ dom z A B
28 25 27 eqsstrrd φ A
29 28 ad2antrr φ r + s + a b A
30 29 sselda φ r + s + a b z A z
31 maxle a b z if a b b a z a z b z
32 22 23 30 31 syl3anc φ r + s + a b z A if a b b a z a z b z
33 32 imbi1d φ r + s + a b z A if a b b a z B R < r C S < s a z b z B R < r C S < s
34 21 33 syl5ibr φ r + s + a b z A a z B R < r b z C S < s if a b b a z B R < r C S < s
35 34 ralimdva φ r + s + a b z A a z B R < r b z C S < s z A if a b b a z B R < r C S < s
36 ifcl b a if a b b a
37 36 ancoms a b if a b b a
38 37 ad2antlr φ r + s + a b u X v Y u R < r v S < s u F v R F S < x if a b b a
39 1 adantlr φ r + s + z A B X
40 2 adantlr φ r + s + z A C Y
41 39 40 jca φ r + s + z A B X C Y
42 fvoveq1 u = B u R = B R
43 42 breq1d u = B u R < r B R < r
44 43 anbi1d u = B u R < r v S < s B R < r v S < s
45 oveq1 u = B u F v = B F v
46 45 fvoveq1d u = B u F v R F S = B F v R F S
47 46 breq1d u = B u F v R F S < x B F v R F S < x
48 44 47 imbi12d u = B u R < r v S < s u F v R F S < x B R < r v S < s B F v R F S < x
49 fvoveq1 v = C v S = C S
50 49 breq1d v = C v S < s C S < s
51 50 anbi2d v = C B R < r v S < s B R < r C S < s
52 oveq2 v = C B F v = B F C
53 52 fvoveq1d v = C B F v R F S = B F C R F S
54 53 breq1d v = C B F v R F S < x B F C R F S < x
55 51 54 imbi12d v = C B R < r v S < s B F v R F S < x B R < r C S < s B F C R F S < x
56 48 55 rspc2va B X C Y u X v Y u R < r v S < s u F v R F S < x B R < r C S < s B F C R F S < x
57 41 56 sylan φ r + s + z A u X v Y u R < r v S < s u F v R F S < x B R < r C S < s B F C R F S < x
58 57 imim2d φ r + s + z A u X v Y u R < r v S < s u F v R F S < x if a b b a z B R < r C S < s if a b b a z B F C R F S < x
59 58 an32s φ r + s + u X v Y u R < r v S < s u F v R F S < x z A if a b b a z B R < r C S < s if a b b a z B F C R F S < x
60 59 ralimdva φ r + s + u X v Y u R < r v S < s u F v R F S < x z A if a b b a z B R < r C S < s z A if a b b a z B F C R F S < x
61 60 adantlr φ r + s + a b u X v Y u R < r v S < s u F v R F S < x z A if a b b a z B R < r C S < s z A if a b b a z B F C R F S < x
62 breq1 c = if a b b a c z if a b b a z
63 62 rspceaimv if a b b a z A if a b b a z B F C R F S < x c z A c z B F C R F S < x
64 38 61 63 syl6an φ r + s + a b u X v Y u R < r v S < s u F v R F S < x z A if a b b a z B R < r C S < s c z A c z B F C R F S < x
65 64 ex φ r + s + a b u X v Y u R < r v S < s u F v R F S < x z A if a b b a z B R < r C S < s c z A c z B F C R F S < x
66 65 com23 φ r + s + a b z A if a b b a z B R < r C S < s u X v Y u R < r v S < s u F v R F S < x c z A c z B F C R F S < x
67 35 66 syld φ r + s + a b z A a z B R < r b z C S < s u X v Y u R < r v S < s u F v R F S < x c z A c z B F C R F S < x
68 20 67 syl5bir φ r + s + a b z A a z B R < r z A b z C S < s u X v Y u R < r v S < s u F v R F S < x c z A c z B F C R F S < x
69 68 rexlimdvva φ r + s + a b z A a z B R < r z A b z C S < s u X v Y u R < r v S < s u F v R F S < x c z A c z B F C R F S < x
70 19 69 syl5bir φ r + s + a z A a z B R < r b z A b z C S < s u X v Y u R < r v S < s u F v R F S < x c z A c z B F C R F S < x
71 13 18 70 mp2and φ r + s + u X v Y u R < r v S < s u F v R F S < x c z A c z B F C R F S < x
72 71 rexlimdvva φ r + s + u X v Y u R < r v S < s u F v R F S < x c z A c z B F C R F S < x
73 72 imp φ r + s + u X v Y u R < r v S < s u F v R F S < x c z A c z B F C R F S < x
74 8 73 syldan φ x + c z A c z B F C R F S < x
75 74 ralrimiva φ x + c z A c z B F C R F S < x
76 7 adantr φ z A F : X × Y
77 76 1 2 fovrnd φ z A B F C
78 77 ralrimiva φ z A B F C
79 7 3 4 fovrnd φ R F S
80 78 28 79 rlim2 φ z A B F C R F S x + c z A c z B F C R F S < x
81 75 80 mpbird φ z A B F C R F S