Metamath Proof Explorer


Theorem rlimcn2

Description: Image of a limit under a continuous map, two-arg version. (Contributed by Mario Carneiro, 17-Sep-2014)

Ref Expression
Hypotheses rlimcn2.1a φzABX
rlimcn2.1b φzACY
rlimcn2.2a φRX
rlimcn2.2b φSY
rlimcn2.3a φzABR
rlimcn2.3b φzACS
rlimcn2.4 φF:X×Y
rlimcn2.5 φx+r+s+uXvYuR<rvS<suFvRFS<x
Assertion rlimcn2 φzABFCRFS

Proof

Step Hyp Ref Expression
1 rlimcn2.1a φzABX
2 rlimcn2.1b φzACY
3 rlimcn2.2a φRX
4 rlimcn2.2b φSY
5 rlimcn2.3a φzABR
6 rlimcn2.3b φzACS
7 rlimcn2.4 φF:X×Y
8 rlimcn2.5 φx+r+s+uXvYuR<rvS<suFvRFS<x
9 7 adantr φzAF:X×Y
10 9 1 2 fovcdmd φzABFC
11 7 3 4 fovcdmd φRFS
12 1 2 10 11 5 6 8 rlimcn3 φzABFCRFS