Metamath Proof Explorer


Theorem rlimres2

Description: The restriction of a function converges if the original converges. (Contributed by Mario Carneiro, 16-Sep-2014)

Ref Expression
Hypotheses rlimres2.1 φAB
rlimres2.2 φxBCD
Assertion rlimres2 φxACD

Proof

Step Hyp Ref Expression
1 rlimres2.1 φAB
2 rlimres2.2 φxBCD
3 1 resmptd φxBCA=xAC
4 rlimres xBCDxBCAD
5 2 4 syl φxBCAD
6 3 5 eqbrtrrd φxACD