Description: The restriction of a function converges if the original converges. (Contributed by Mario Carneiro, 16-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rlimres2.1 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) | |
| rlimres2.2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ⇝𝑟 𝐷 ) | ||
| Assertion | rlimres2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝐷 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlimres2.1 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) | |
| 2 | rlimres2.2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ⇝𝑟 𝐷 ) | |
| 3 | 1 | resmptd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ↾ 𝐴 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) |
| 4 | rlimres | ⊢ ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ⇝𝑟 𝐷 → ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ↾ 𝐴 ) ⇝𝑟 𝐷 ) | |
| 5 | 2 4 | syl | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ↾ 𝐴 ) ⇝𝑟 𝐷 ) |
| 6 | 3 5 | eqbrtrrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝐷 ) |