Metamath Proof Explorer


Theorem rnasclmulcl

Description: (Vector) multiplication is closed for scalar multiples of the unit vector. (Contributed by SN, 5-Nov-2023)

Ref Expression
Hypotheses rnasclmulcl.c C=algScW
rnasclmulcl.x ×˙=W
rnasclmulcl.w φWAssAlg
Assertion rnasclmulcl φXranCYranCX×˙YranC

Proof

Step Hyp Ref Expression
1 rnasclmulcl.c C=algScW
2 rnasclmulcl.x ×˙=W
3 rnasclmulcl.w φWAssAlg
4 1 3 rnasclsubrg φranCSubRingW
5 2 subrgmcl ranCSubRingWXranCYranCX×˙YranC
6 4 5 syl3an1 φXranCYranCX×˙YranC
7 6 3expb φXranCYranCX×˙YranC