Metamath Proof Explorer


Theorem rngass

Description: Associative law for the multiplication operation of a non-unital ring. (Contributed by NM, 27-Aug-2011) (Revised by AV, 13-Feb-2025)

Ref Expression
Hypotheses rngass.b B=BaseR
rngass.t ·˙=R
Assertion rngass RRngXBYBZBX·˙Y·˙Z=X·˙Y·˙Z

Proof

Step Hyp Ref Expression
1 rngass.b B=BaseR
2 rngass.t ·˙=R
3 eqid mulGrpR=mulGrpR
4 3 rngmgp Could not format ( R e. Rng -> ( mulGrp ` R ) e. Smgrp ) : No typesetting found for |- ( R e. Rng -> ( mulGrp ` R ) e. Smgrp ) with typecode |-
5 3 1 mgpbas B=BasemulGrpR
6 3 2 mgpplusg ·˙=+mulGrpR
7 5 6 sgrpass Could not format ( ( ( mulGrp ` R ) e. Smgrp /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .x. Y ) .x. Z ) = ( X .x. ( Y .x. Z ) ) ) : No typesetting found for |- ( ( ( mulGrp ` R ) e. Smgrp /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .x. Y ) .x. Z ) = ( X .x. ( Y .x. Z ) ) ) with typecode |-
8 4 7 sylan RRngXBYBZBX·˙Y·˙Z=X·˙Y·˙Z