Metamath Proof Explorer


Theorem rngimrnghm

Description: An isomorphism of non-unital rings is a homomorphism. (Contributed by AV, 23-Feb-2020)

Ref Expression
Hypotheses rnghmf1o.b B=BaseR
rnghmf1o.c C=BaseS
Assertion rngimrnghm FRRngIsomSFRRngHomoS

Proof

Step Hyp Ref Expression
1 rnghmf1o.b B=BaseR
2 rnghmf1o.c C=BaseS
3 rngimrcl FRRngIsomSRVSV
4 1 2 isrngim RVSVFRRngIsomSFRRngHomoSF:B1-1 ontoC
5 simpl FRRngHomoSF:B1-1 ontoCFRRngHomoS
6 4 5 syl6bi RVSVFRRngIsomSFRRngHomoS
7 3 6 mpcom FRRngIsomSFRRngHomoS