Metamath Proof Explorer


Theorem rngoaddneg1

Description: Adding the negative in a ring gives zero. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Hypotheses ringnegcl.1 G=1stR
ringnegcl.2 X=ranG
ringnegcl.3 N=invG
ringaddneg.4 Z=GIdG
Assertion rngoaddneg1 RRingOpsAXAGNA=Z

Proof

Step Hyp Ref Expression
1 ringnegcl.1 G=1stR
2 ringnegcl.2 X=ranG
3 ringnegcl.3 N=invG
4 ringaddneg.4 Z=GIdG
5 1 rngogrpo RRingOpsGGrpOp
6 2 4 3 grporinv GGrpOpAXAGNA=Z
7 5 6 sylan RRingOpsAXAGNA=Z