Metamath Proof Explorer


Theorem rnresv

Description: The range of a universal restriction. (Contributed by NM, 14-May-2008)

Ref Expression
Assertion rnresv ranAV=ranA

Proof

Step Hyp Ref Expression
1 cnvcnv2 A-1-1=AV
2 1 rneqi ranA-1-1=ranAV
3 rncnvcnv ranA-1-1=ranA
4 2 3 eqtr3i ranAV=ranA