Metamath Proof Explorer


Theorem rnsnn0

Description: The range of a singleton is nonzero iff the singleton argument is an ordered pair. (Contributed by NM, 14-Dec-2008)

Ref Expression
Assertion rnsnn0 AV×VranA

Proof

Step Hyp Ref Expression
1 dmsnn0 AV×VdomA
2 dm0rn0 domA=ranA=
3 2 necon3bii domAranA
4 1 3 bitri AV×VranA