Metamath Proof Explorer


Theorem rnss

Description: Subset theorem for range. (Contributed by NM, 22-Mar-1998)

Ref Expression
Assertion rnss ABranAranB

Proof

Step Hyp Ref Expression
1 cnvss ABA-1B-1
2 dmss A-1B-1domA-1domB-1
3 1 2 syl ABdomA-1domB-1
4 df-rn ranA=domA-1
5 df-rn ranB=domB-1
6 3 4 5 3sstr4g ABranAranB