Metamath Proof Explorer


Theorem rnxrnidres

Description: Range of a range Cartesian product with a restriction of the identity relation. (Contributed by Peter Mazsa, 6-Dec-2021)

Ref Expression
Assertion rnxrnidres ran R I A = x y | u A u = y u R x

Proof

Step Hyp Ref Expression
1 rnxrnres ran R I A = x y | u A u R x u I y
2 ideqg y V u I y u = y
3 2 elv u I y u = y
4 3 anbi1ci u R x u I y u = y u R x
5 4 rexbii u A u R x u I y u A u = y u R x
6 5 opabbii x y | u A u R x u I y = x y | u A u = y u R x
7 1 6 eqtri ran R I A = x y | u A u = y u R x